7 research outputs found

    Investigation of QoS Performance Evaluation over 5G Network for Indoor Environment at millimeter wave Bands

    Get PDF
    One of the key advancement in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher data rates as compared to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), when we propagate the radio signal at high frequencies. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the realworld scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28 GHz, 38 GHz, 60 GHz and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. The results have been collected concerning the capacity of users to evaluate the average user throughput, cell-edge user throughput, average cell throughput, spectral efficiency and fairness index. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network

    An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

    Get PDF
    Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leads to reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11]

    Employing an Energy Harvesting Strategy to Enhance the Performance of a Wireless Emergency Network

    No full text
    Establishing a wireless communication network (WCN) is critical to saving people’s lives during disasters. Since the user equipment (UE) must transfer their information to the functioning area, their batteries will be significantly drained. Thus, technologies that can compensate for battery power consumption, such as the energy harvesting (EH) strategy, are highly required. This paper proposes a framework that employs EH at the main cluster head (MCH) selected by the enhanced clustering technique (CFT) and simultaneously transmits information and power wirelessly to prolong the lifetime of the energy-constrained network. MCH harvests energy from the radio frequency signal via the relay station (RS) and uses the harvested energy for D2D communications. The suggested framework was evaluated by analyzing the EH outage probability and estimating the energy efficiency performance, which is expected to improve the stability of the network. Compared to the UAV scenario, the simulation findings show that when RS is in its optimal location, it enhances the network EH outage probability performance by 26.3%. Finally, integrating CFT with wireless communications links into cellular networks is an effective technique for maintaining communication services for mission-critical applications

    Determining Optimal Zone Radius of Zone Routing Protocol Based on Deep Recurrent Neural Networks in the Next Generation Wireless Backhaul Networks

    No full text
    Next-generation wireless networks are becoming more popular and rely on reliable backhaul networks to work properly. Wireless backhaul networks also adopt various innovative technologies to improve capacity and provide more flexible deployments to meet networks' high-quality requirements. One of the essential innovations to maintain the wireless backhaul performance is combining the existing routing protocol technology and the deep learning concept. The concept of deep learning is gaining traction as a powerful way to add intelligence to wireless networks with complex topologies and radio environments. This is because conventional routing protocols do not learn from their previous experiences with various network anomalies. This paper proposed a predictive model of zone radius value using the deep recurrent neural network variant, namely the long short-term memory recurrent neural network (LSTM-RNN) algorithm. Determination of zone radius value conducted by measuring the whole of nodes routing zone using various network performance as input parameters such as Routing Overhead, Energy Consumption, Throughput, and User Usage. Performance measurements such as mean square error (MSE), error distribution histogram, training state, regression, correlation, and time series response are gauged and compared for static and mobile node environments. Results showed that the proposed algorithm can accurately predict zone radius for both environments. However, the accuracy of the proposed algorithm is higher when implemented in a static node environment
    corecore